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SWL leads to a career in lonospheric Radar and Physics

Hallicrafters SX-110 (1962)

6SG7 RF Amp, 6SA7 Converter, 6SG7 1st IF Amp, 6SK7 2nd IF Amp, 6SC7 Audio
Amp/BFO, 6K6GT Audio Output, 6H6 Detector/ANL/AVC and 5Y3GT Recitifier.
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Anthropogenic Space Weather
(Human Effects on Geospace)

Outline:

Natural vs. Anthropogenic (e.g. QRN vs. QRM)

High Altitude Nuclear Explosions (HANE):
EMP
Artificial Radiation Belts
- Satellite Damage
- Geomagnetic Signals

VLF Human Transmissions and their effects on the Radiation Belts

Gombosi, T.1., D. N. Baker, A. Balogh, P. J. Erickson, J. D. Huba, and L. J. Lanzerotti (2017), Anthropogenic
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The lonosphere Is Naturally Complex
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The lonosphere Is Naturally Complex

(red = more electrons, blue = less)
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Table 1 List of high-altitude nuclear explosions (Wikipedia Contributors 2016)

Designation Country Date Altitude Yield (kt)
Yucca USA Apr 28, 1958 26 km 1.7

Teak USA Aug 1, 1958 77 km 3.8x103
Orange USA Aug 12, 1958 43 km 3.8x10°
Argus | USA Aug 27, 1958 200 km 1.7
Argus I USA Aug 30, 1958 240 km 1.7
Argus 111 USA Sep 6, 1958 540 km 1.7
Test#88 USSR Sep 6, 1961 23 km 10.5
Test#115 USSR Oct 6, 1961 41 km 40
Test#127 USSR Oct 27, 1961 150 km 1.2
Test#128 USSR Oct 27, 1961 300 km 1.2
Starfish Prime USA Jul 9, 1962 400 km 1.4 x 10°
Checkmate USA Oct 20, 1962 147 km 7

Test# 184 USSR Oct 22, 1962 290 km 300
Bluegill Triple Prime USA Oct 26, 1962 50 km 410
Test#187 USSR Oct 28, 1962 150 km 300
Kingfish USA Nov 1, 1962 97 km 410

Test#195

USSR

P. J. Erickson

Nov 1, 1962

Anthropogenic Space Weather

59 km

Fig. 1 From left to right, the Orange, Teak, Kingfish, Checkmate, and Starfish high-altitude nuclear tests
conducted in 1958 and 1962 by the United States near Johnston Island in the mid-Pacific (from Foster et al.
2008)
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Treaty Banning Nuclear Weapon Tests in the Atmosphere, in Outer Space and
Under Water

aoe- o

BUREALI OF ARMS CONTROL, VERIFCATION, AND COMPLIANCE

vk Ratified 20 Oct 1963
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High-altitude nuclear EMP (HEMP)

Fig. 2 The various phases of a E1 E2 E3
generic HEMP signal (from Early-time Intermediate-time Late-time
Savage et al. 2010). For e B . ' )
comparison, we also show a —
typical electromagnetic signal ‘ scattered gamma signal
from lightning ‘ ' P ———

4—-— prompt gamma signal

secondary gamma signal

i

E(t) (V/m)
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Fig.3 General basis of the E1l ¥ = gammas

HEMP generation process. ¢, = Compton clectrons
Gammas from the nuclear burst By, = geomagnetic field
; > E = clectne field
interact with the uchr H = magnetic ficld
atmosphere generating Compton P = Poynting vector

electrons, which are turned in the X f
Earth’s geomagnetic field, and \51 HEMP
produce a transverse current that

radiates an EM pulse towards the
Earth (from Savage et al. 2010) Earth
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Fig. 7 Samples of E1 HEMP exposed regions for several burst heights. The red circles show the exposed
regions for the given burst heights, for a nuclear burst over the central US (from Savage et al. 2010)
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Earth’s Radiation Belts

Protons (100+ MeV)
and HE electrons (100s keV)

(stable; Cosmic ray albedo neutron decay) L
Magnetically

connected
ionosphere /
plasmasphere
observations

les happens

\
Van Allen Probes
(apogee at 5.5 to 6 Re;

equatorial plane) Electrons &

(highly variable;
10s eV - MeV+)




Particle Invariants

- o~

\, TRAJECTORY OF

TRAPPED PARTICLE

DRIFT OF

ELECTRONS
DRIFT OF

|
PROTONS MAGNETIC FIELD LINE

Characteristic time scales: = Gyro: ~millisecond
e Bounce: ~0.1-1.0s
e Drift: ~T1 - 10 minutes

= Three types of periodic motion of trapped particles
= gyro motion
= bounce motion
« drift motion

= Each motion has an associated adiabatic invariant

Spjeldvik and Rothwell, 1989

(D. Baker; W. Johnston GEM tutorial)
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Fig. 10 Plots of passes by the -106 97 -87 -12 -52 -25 LONGITUDE
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1958 (from Van Allen et al.
1959¢)
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Fig. 11 The decay of energetic
electron fluxes in the artificial
radiation belt created by the
Argus III nuclear explosion,
observed by the Explorer IV
satellite over several weeks. The
plot shows the product of the
maximum true counting rate at
the center of the Argus III shell
with the geometric width of the
shell at half maximum, to provide
a measure of the electron content
of the belt and its decrease with
time (from Van Allen et al.
1959c¢)

Artificial
Radiation Belts:
Long Term Effects
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4 5 6

>5 MeV B Explorer XV, Nov 16. 1962, re Mcliwain
relativistic

electron
fluxes

Log scale!

Van Allen Probes REPT-A Mar 23, 2015

Fig. 21 Comparison of Explorer XV data from 10 November 1962 with Van Allen Probes data taken with
the Relativistic Electron-Proton Telescope (REPT) on 23 March 2015. The Explorer XV data are adapted
from Mcllwain (1963) (see Fig. 20) and the Van Allen Probes data are adapted from measurements described
in Baker et al. (2016). It is noted that the March 2015 outer zone fluxes of E > 5 MeV electrons were more
intense and broader in spatial extent than were such electrons in the November 1962 case. On the other hand,
the inner zone electron fluxes in the 1962 post-Starfish era were at least 10 million times more intense than
fluxes seen in the present-day magnetosphere. Such high fluxes were deadly to orbiting spacecraft of the early
1960s (as described in the text)
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Fig. 28 (a) Deterioration of a) O 1% S48 4L TP
transistor performance measured it ‘e
on Telstar-1. These were | __i ' SHIELD THICKNESS

n n ] : . - :
specially instrumented < 5 Rt 028G/ CM
r I I C I a “damage-transistors™ for the W SN
purpose of observing the nature > \ " RS
and magnitude of mdiation \ -

= . ! damage (from Fig. 30, Brown
adiation Belts i
. (b) Comparison of the radiation

damage 1o transistors and solar
cells. Solar cells are more

Satellite Electronics Damage

supplied by the cells, whereas
circuits can be designed to be
radiation resistant by taking into
account the degradation in
transistor parnmeters. For today's
spacecraft, solar cells remain
critical, but the design and
fabrication of electronic
components have developed very
significant radiation resistance
(from Brown ct al. 1963)
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Fig. 23 (a) The Geiger counting rate observed on the Ariel-1 satellite. In the hours following the explosion
the instrument regularly saturated on each orbit as the spacecraft crossed the forming artificial radiation belt.
(b) In the long term observations of the stable high energy cosmic rays by Ariel-1, the high energy electrons
injected by the explosion stand out even at high value L-shells (Figs. from Durney et al. 1962 and Elliot 1966)
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Artificial
Radiation Belts:
Solar Cell Damage

FITCC JRRESPOND S T10
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—

Fig. 27 The evolution of the average output of the current supplied by the solar cells on Telstar from launch
1o February 1963, corrected for mean solar distance. The it corresponds to the damage calculated for a
mission-averaged 1 MeV equivalent energetic electron flux rate of 6 x 10'2 electronscm™2 per day. The fit
has been extrapolated to two years in orbit at the same energetic particle flux rate; the power output would
then be reduced to 68% of its initial performance. (Taken from Fig. 28, Brown and Gabbe 1963)
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Fig. 24 Observation of the decreasing power from the solar cells on the TRAAC and Transit-4B satellites.
(a) Time history from launch, showing the gradual damage from the natural radiation environment, followed
by the much accelerated loss of power after the Starfish explosion (from Fig. 5 in Fischell 1962a). (b) Tran-
sit-4B solar-panel performance after the Starfish event, showing that the performance loss is best modeled by
an initial period of higher intensity radiation, followed by a constant radiation flux (from Fig. 7 in Fischell
1962a)
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Artificial
Radiation Belts:
Global Magnetometer Effects

Fig. 31 Magnectograms from six
stations distributed in distance
from Johnstoa Island following
the Argus I nuclear detonation
on September 6, 1958, It shows
two groups of signatures; the first
very prompt, the second showing 3050
reasonably clear velocity KM/S
dispersion. The fitted velocities

are by Berthold et al, (1960); for -

the prompt signal, Caner (1964)
argued that it was arguably
synchronous worldwide, as was
later found for the prompt
signature from Starfish
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60’ A

020 30 40 50 ® Fig.34 Isopleths of the amplitude of the total-disturbance magnetic vector at 0903 UT on July 9, 1962 (2 min
TIME AFTER ZERO, SECONDS 51 s after Starfish), plotted on a Mercator projection. The detonation took place 400 km above Johnston
Island (JI). Values are in gammas. A contour interval of 10 gammas is used from the 10-gamma isopleth

upward; the color lines are 10, 50, 100, and 150 gammas (from Bomke et al. 1966)
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Human triggered events can be obvious.

Fig. 1 From left to right, the Orange, Teak, Kingfish, Checkmate, and Starfish high-altitude nuclear tests
conducted in 1958 and 1962 by the United States near Johnston Island in the mid-Pacific (from Foster et al.
2008)

. but there are also unexplained natural space weather effects
that might be human related.
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Wave-Particle Interactions

A zoo of natural waves exists
In the plasma within our magnetosphere:

Chorus / Whistlers

ULF waves

Magnetosonic waves

EMIC waves

Plasmaspheric Hiss [incoherent]

SENSEOF EAND Db
ROTATIONTO A
STATIONARY DBSERVER

Some can be affected by human
transmissions.

These waves can greatly affect nearby a8

CLECTHON

partiCIGS Sl Elkington, 2005
(acceleration, loss).

Pitch angle, Coulomb scattering = Loss
Slow diffusion = Transport
Linear and non-linear processes involved

Resonance conditions can depend
on things like the ambient background
plasma (e.g. local natural space weather)
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The ‘Impenetrable Barrier’ to Radiation Belt Electrons

Van Allen Probes: Three Years’ Observations of Ultra-Relativistic Electrons

REPTA&B 4.2MeV Spin-averaged
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17 March 2015

A mystery... oris it?

Baker et al, 2014

P. J. Erickson Anthropogenic Space Weather UK Spc Wx Knowledge Exchange 13 Oct 2017 21




VLF Transmitters

P . )

4 R?

Figure 5. Antenna system of VLF transmitter, Cutler, Maine.
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VLF Transmitters

Table 2. VLF Transmitter Call Signs, Frequency, Geographic Coordinates, Output Power, and
Geomagnetic L Shells

Transmitter Frequency (kHz) Latitude Longitude Estimated Power (kW) [ Shell (2008)

NRK, Iceland 22°28' W
NLK, Seattle 121° 55' W
NDK, North Dakota 98° 200 W
NAA, Maine 67° 17 W
GQD, Anthorn 03° 17 W
HWU, Rosnay 01°15' E
DHO, Ramsloh 07° 37° E
ICV, Tavolara Island 09° 45" E

NWC, NW Cape 114° 10° E
NTS, Woodside 146° 56" E
NPM, Hawan 1587 09° W
NAU, Puerto Rico 67709 W
AP, Ebino 130° 50° E

ra
' N
b w1 W8 W oW

BN

oN N
LA L= ARV
—‘N—‘—‘DJ:—‘IU[‘J'JJIJUI
a0

22 Z2Z0nWnZZ2 2222277
N e = U

(Rodger, 2009)
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VLF and ELF
Communications
Signals: Naval Use




The large negative radial density gradients de~-
flect the ray inward, but as the ray moves in and
£ encounters markedly reduced gradients, the curva-
I ture of the earth's field deflects the rayoutward.
VL F ran I I l Itte rS Upon entering the region of high gradient the ray INNER EDGE TRAPPING
will again be refracted inward, and the process
will be repeated. The result is that the ray is

trapped by the density gradient and its path os-
cillates about the direction of earth's field.

Gradient trapping
Helliwell, 1965 Inan and Bell, 1977

(L = magnetic coordinate) gidional section

L=5

shadow
boundary

plasmapause

Model

Meridional section of power flux predicted by AFRLs VLF Propagation Code in the plasmasphere due to NPM
transmissions. The transmitter is marked by a triangle. Note the prominent shadow boundary in the conjugate hemisphere. An

analogous boundary (not visible) exists in the transmitter hemisphere. [Starks et al, 2009]
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VLF Transmitters: In-situ Measurements

8 October 2013 01 UT EMFISIS-A HFR Wave Spectra

WVan Allen \>
Probes
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VLF Resonance with Radiation Belts?

SENSE OF EAND b
ROTATIONTO A
STATIONARY DBSERVER

Sandel et al
o 2001

CYRATION

Elkngton, 2005 IMAGE EUV
30.4 nm He+ The Plasmasphere

Note that 17.1 and 22.3 kHz VLF transmitter frequencies cannot resonate at the equator
beyond [2.2 - 2.4 Earth radii], respectively...
Abel and Thorne 1998

But all these calculations done ONLY for some (not all) conditions.

No Nonlinear Effects were included.
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VLF Transmitters Interact With Natural Whistler Waves

Plasmapause 8 March 2015 18:30 UT
Y S
EMFISIS-A HF Spectra ) It is likely that
s v VLF TX
& 1T CYRCw '8 y ;
- h T stimulates
?; . " significant
£ oy whistler wave
- 16E growth
@ = :
w46 - outside the
g £
8

44 -18
19

20

plasmasphere

N
N

e.g. Foster and Rosenberg, 1976

The VLF transmitter signal significantly increases in intensity as it encounters a band of
natural wave emissions immediately beyond the plasmasphere.

This is strong enough to dump radiation belt electrons directly into the atmosphere
(where they are scattered and lose their energy).
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Barriers, Bubbles, and Plasmapause: The Big Picture

~ Schematic: VLF Bubble at the Impenetrable Barrier

MeV Electrons MeV Electron
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Conclusion / Connections to amateur radio

shadow =
boundary

o
= .

plasmapause

Sandel et al
2001
IMAGE EUV
(VLF) 30.4 nm He+ The Plasmasphere

All HF signals > plasma frequency leak out of the plasmasphere.
Although they are unlikely to modify the environment directly, they are an excellent probe of the
ionospheric structure.

Radiation belts and other anthropogenic disturbances can be directly influenced by ionospheric /
plasmaspheric conditions.

We should continue to find new ways to understand this environment - with amateur radio data help.
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